

0143-7208(94)00076-X

Azo-Quinonehydrazone Tautomerism in 2-Phenylazo-1-Naphthol

Liudmil Antonov* & Stefan Stoyanov

University of Sofia, Department of Chemistry, 1 J. Bourchier Avenue, Sofia 1126, Bulgaria

(Received 23 September 1994; accepted 8 November 1994)

ABSTRACT

The tautomeric equilibrium of 2-phenylazo-1-naphthol in 13 different solvents is analysed using a previously developed quantitative approach. The spectral characteristics of both tautomeric forms and the tautomeric constants K_T are determined and compared with those of the isomers 1-phenylazo-4-naphthol and 1-phenylazo-2-naphthol. The long wavelength band at about 500 nm, determining the colour, corresponds to the hydrazone form and consists of three vibrational sub-bands. The low sensitivity towards changes in solvent polarity and the highest content of hydrazone form within the three isomeric phenylazonaphthols explains the wide use of dyes containing a 2-phenylazo-1-naphthol moiety. PPP-MO calculations were in good agreement with the experimental spectral data for both tautomeric forms. The redistribution of the π -electronic density during the $S_0 \rightarrow S_1$ transition is calculated for both tautomeric forms, and its influence on substituent effects, dye-solvent interaction and colour strength is discussed.

INTRODUCTION

2-Phenylazo-1-naphthol (I) and its derivatives (Fig. 1) are widely used dyes and represent about 26% of the commercially disclosed structures of azo dyes. Spectral and quantum chemical investigations, i.e. their colour prediction, are therefore of theoretical and technological value.

The dyes I can exist in two possible tautomeric structures, azo (I_A)

^{*} To whom correspondence should be addressed.

Fig. 1. Azo-quinonehydrazone tautomerism of 2-phenylazo-1-naphthol.

and hydrazone (I_H), stabilized to a significant extent by intramolecular H-bonding.² It has been shown that I exists predominantly^{3,4} or exclusively^{5,6} in its hydrazone from I_H. This conclusion is drawn from the lack of a distinct band in the 380–420 nm region of the absorption spectrum (a region within which the long wavelength absorption band for the A-form is observed), together with results of NMR studies in deuterated chloroform.

The existence of a strong intramolecular H-bond is the main cause of the weak mobility of the tautomeric equilibrium $I_A \rightleftharpoons I_H$ towards environmental factors such as solvent polarity changes. The spectral changes observed are much less pronounced than in the isomeric 1-phenylazo-4-naphthol (II) and 1-phenylazo-2-naphthol (III)^{7,8} and limit the application of existing approaches for quantitative spectral analysis. The quantitative evaluation of the tautomeric equilibrium in I is difficult and only earlier qualitative conclusions are available.³⁻⁵

The introduction of computer methods for spectral data processing, based on the resolution of complex absorption bands, ^{9,10} and the use of integral intensities instead of absorption values in some particular cases in quantitative analysis, ¹¹ assists in the analysis of complicated equilibria where the spectral changes are small. Using these approaches, the tautomeric equilibria in II¹² and III⁸ have been successfully investigated.

The aim of this study is to analyse quantitatively the tautomeric equilibrium $I_A \rightleftharpoons I_H$ in different solvents, to estimate their influence and to compare the spectral characteristics of the azo and hydrazone tautomeric forms with the π -electronic transitions derived from the PPP-MO approach.

MATERIALS AND METHODS

2-Phenylazo-1-naphthol was obtained as a by-product in the coupling reaction of diazotised aniline with 1-naphthol. The two isomeric phenylazonaphthols I and II were separated by column chromatography. The purity of compound I, m.p. 134–135°C, was checked by TLC and its spectral characteristics were in accord with published data.^{3–5}

The absorption spectra of I were obtained on a Lambda 17 UV-Vis spectrophotometer (Perkin Elmer). Isomolar solutions in 13 different solvents were measured at constant temperature (25°C) and analysed with the original programmes for the resolution of overlapping bands and quantitative analysis of tautomeric equilibria, as described elsewhere. The quantum chemical calculations were carried out using a conventional PPP SCF-CI program, suitable for use on a personal computer. The parameters suitable for the potentially tautomeric phenylazonaphthols, including $I_A \rightleftharpoons I_H$, are those given by Griffiths *et al.*¹³⁻¹⁵

RESULTS AND DISCUSSION

The absorption spectra of I in three different solvents are presented in Fig. 2. The observed spectral changes are rather small, even in comparison with those in III.⁸ There is no visual evidence for a band around 380–420 nm, which could be assigned to the azo form I_A . However, this is not sufficient evidence to conclude that no azo tautomer exists, since in the corresponding second derivative spectral curves (Fig. 3) a band at about 420 nm is clearly visible. The second derivative band at about 340 nm could possibly also be associated with an azo band.

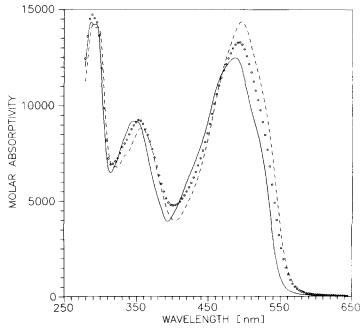
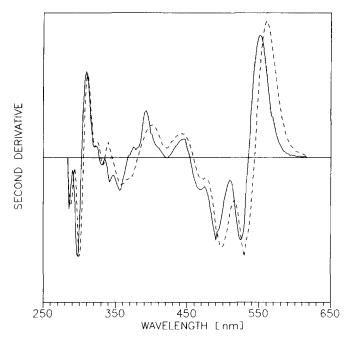



Fig. 2. Absorption spectra of I in dichloromethane (---), methanol $(\circ\circ\circ\circ\circ)$ and i-octane (----).

Fig. 3. Second derivative spectra $d^2A/d\nu^2$ of I in dichloromethane (---) and *i*-octane (----).

Although the spectral changes are small, the absorption spectra in the 13 solvents were analysed using a quantitative approach developed and applied earlier. The absorption spectrum of \mathbf{I} in *i*-octane, together with the resolved individual bands assigned to both tautomeric forms, is presented in Fig. 4. The long wavelength band at about 500 nm corresponds to the \mathbf{I}_{H} form and consists of three sub-bands, which most probably are vibrational in nature. This finding is strongly supported by the second derivative spectra (Fig. 3), as well as by the previous studies of Gabor *et al.*, who showed that at -182° C in methylcyclohexane: *i*-hexane (1:1) a distinct vibrational structure consisting of three sub-bands of the long wavelength hydrazone band is observed.

The spectral characteristics for both tautomeric forms, together with the molar parts of the A-form (X_A) , and the tautomeric constants $K_T = [H]/[A]$ in the 13 solvents, are presented in Table 1. Most probably the small changes observed in the X_A and K_T values on changing the solvent polarity are due to the strong intramolecular H-bond imparting relative stability to the tautomeric equilibrium $I_A \rightleftharpoons I_H$ towards external influences. Although the observed changes are within 10% (which does not allow a clear unidirectional interpretation to be made), it should be noted that the direction of these changes is very similar to that observed in their

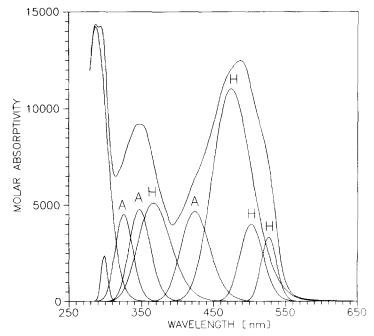


Fig. 4. Absorption spectrum of I in i-octane, with resolved individual bands.

structural analogues II and III^{8,11,12} where the changes are much more pronounced and allow their classification.

The relation between the molar absorptivities of I_A and I_H in their maxima (Table 1) also differs and again, as in the case of the structural isomers II and III, 8,11,12 the III-form has the more intense absorption in the visible region, i.e. higher colour strength, a fact which is especially important for coloristic and technological properties.

The spectral characteristics of the A- and H-forms in I-III, and also the calculated $X_{\rm H}$ and $K_{\rm H}$ values in *i*-octane and ethanol, are shown in Table 2. Comparison shows that the content of the H-form increases in the order II < III < I in accordance with the observations of Lyčka *et al.*¹⁶ based on ¹³C NMR. The low sensitivity towards changes in solvent polarity and the highest content of the H-form could explain the established fact¹ that the azo dyes of type I are the most widely used.

The calculated individual spectra of both tautomeric forms $I_A \rightleftharpoons I_H$ in selected solvents are presented in Fig. 5. It is interesting to compare the spectral characteristics of I_A and I_H with the corresponding π -electronic transitions using the PPP-MO method. The calculated transition energies and oscillator strengths $f^{\rm calc}$, and the experimentally obtained values of $\lambda_{\rm max}$ and $f^{\rm exp}$ for both tautomeric forms I_A and I_H are shown in Table 3. A good agreement between the values is observed, although to some extent

TABLE 1
Calculated Values of X_A and K_T and Spectral Characteristics of Both Tautomeric Forms in the Investigated Solvents

Solvent	Origin, Purity	D^a	<i>X</i> _A (%)	<i>K</i> _T	A-form		H -form	
					$\lambda_{max} \ (nm)$	$\boldsymbol{\varepsilon}_{max}$	λ_{max} (nm)	€ _{max}
Dichloro- methane	Merck, spectral	8.93	28·2 ± 0·4	2.54	424.8	12 100	496.8	19 920
Chloroform	Fluka, p.a.	4.81	28.3 ± 0.4	2.53	426-4	11 470	498.4	20 130
1,2-Dichloro- ethane	Merck, extra pur	2·18	30.3 ± 0.4	2.30	424.8	11 880	496.8	19 990
Acetonitrile	Fluka, spectral	37.50	31.0 ± 0.4	2.22	423-2	12 100	492.0	19 770
Carbon tetrachloride	Merck, e pure	2-24	31.9 ± 0.4	2.13	424.8	12 180	493.6	19 890
Ethanol	Fluka, 96% spectral	24.55	$32\cdot1\pm0\cdot4$	2.11	423-2	11 370	495-2	19 720
Methanol	Merck, spectral	32-70	32.7 ± 0.3	2.05	421.6	11 690	492.0	19 650
Ethyl acetate	Fluka, p.a.	6.02	35.4 ± 0.3	1.82	421.6	12 080	492.0	20 270
Acetone	Merck, spectral	20.70	35.8 ± 0.5	1.79	423-2	12 670	492.0	19 870
Dimethyl sulfoxide	Merck, spectral	46.68	37.7 ± 0.4	1.65	416-8	12 250	498-4	18 170
Cyclohexane	Fluka, spectral	2.02	38.3 ± 0.4	1.61	424.8	11 870	488.8	20 440
Dimethyl formamide	Merck, spectral	36.71	38.4 ± 0.3	1.60	416-8	11 640	496.8	19 200
i-Octane	Riedel-de Haen, spectral	1.94	39·9 ± 0·4	1.50	423-2	11 670	487-2	20 550

^a Dielectric constant, Fluka 1993/1994, p. 1526.

the calculations overestimate the colour strength of the hydrazone structure I_H . In this respect, the very pronounced temperature dependence of the absorption intensity in the visible region observed by Gabor *et al.*³ must be noted.

The redistribution of the π -electron density during the $S_0 \to S_1$ electronic transition determines the influence of factors such as substituent effects, dye-solvent interactions and the intensity of this transition. The change of the π -electronic density during the $S_0 \to S_1$ transition could be illustrated schematically, showing the contribution of each atom in the charge transfer proceeding in both tautomeric structures (A and H). The

Compound	Solvent	X_{H}	K_{T}	A-f	orm	H-form	
		(7-9)		$\lambda_{max} \ (nm)$	$oldsymbol{arepsilon}_{max}$	$\lambda_{max} (nm)$	€ _{max}
I	ethanol	67.9	2.11	423.2	11 370	495.2	19 720
	i-octane	60.1	1.50	423.2	11 670	487.2	20 550
II	ethanol	19.4	0.24	407.2	15 560	479.2	34 430
	i-octanea	10.4	0.11	385.0	16 600	476.0	27 200
Ш	ethanol	42.0	0.72	413.6	16 970	482.4	34 190
	i-octane	33.1	0.49	413-6	16 200	480.8	32 910

TABLE 2
Spectral Characteristics Calculated for the Pure Tautomeric Forms of I-III

differences between the calculated π -electron densities, $\Delta Q_i = Q_i^{S_1} - Q_i^{S_0}$, for each atom i of both tautomeric structures are shown in Fig. 6, where the overall area of the circles is proportional to ΔQ_i . The shaded circles correspond to an increase, and empty ones to a decrease, in π -electron density upon excitation of the molecule.

The transition moment directions of the first electronic transitions for

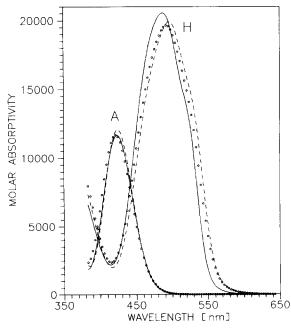


Fig. 5. Individual absorption curves of both tautomeric forms of I in dichloromethane (---), methanol (0000000) and i-octane (-----).

^a According to Ref. 7.

Form	$\lambda_{max}^{calc} \ (nm)$	f ^{calc}	$\lambda_{max}^{exp~a} \ (nm)$	$\lambda_{max}^{obs\ b} \ (nm)$	f ^{exp a}	$f^{obs\ b}$
	429	0.681	423	423	0.139	0.139
A	323	0.187	347	335	0.155	0.292
	300	0.654	325		0.137	
			526		0.022	
	498	0.993	505	487	0.044	0.305
**			474		0.239	
Н	334	0.113				
	315	0.126	366	366	0.153	0.153
	301	0.013				

TABLE 3

Comparison Between the Calculated (PPP-MO) Electronic Transitions and the Individual Spectral Bands of Both Tautomeric Forms of I in *i*-Octane and their f Values

both tautomeric structures are also given in Fig. 6. It should be noted that in the azo dyes I-III, in all cases the charge transfer of the azo structure proceeds mainly from specific sites in the naphthol ring towards the azo group and to a smaller extent to the phenyl ring. The opposite is true for the hydrazone structure—the charge transfer proceeds mainly from the phenyl ring and aniline-like N-atom towards specific sites in the naphthoquinone ring and the quinoneimine N-atom. These findings reflect another important colour related property—the calculated transition moments are in opposite directions for both tautomeric structures.

Such a treatment of spectral data and PPP-MO calculations explains the experimental observations, and enables important colouristic properties of dyes with specific tautomeric structure to be evaluated.

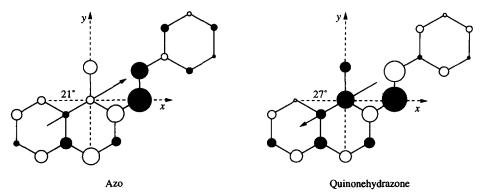


Fig. 6. Schematic presentation of ΔQ_i for the two tautomeric A and H forms.

^a Estimated from Fig. 4 according to Refs 9 and 10.

^b From the individual spectral curves of I_A and I_H (Fig. 5).

ACKNOWLEDGEMENT

Financial support from the National Science Foundation is gratefully acknowledged. The technical cooperation of Mr G. I. Georgiev is also acknowledged.

REFERENCES

- 1. Kelemen, J., Dyes and Pigments, 2 (1981) 73.
- 2. Ball, P. & Nicholls, C. H., Dyes and Pigments, 3 (1982) 5.
- Gabor, G., Frey, Y., Gregory, D., Kaganowitch, M. & Fischer, E., Israel J. Chem., 5 (1967) 193.
- 4. Reeves, R. & Kaiser, R., J. Org. Chem., 35 (1970) 3670.
- 5. Kaul, B. L., Nair, P. M., Rama Rao, A. V. & Venkataraman, K., *Tetrahedron Letters*, 32 (1966) 3897.
- 6. Kishimoto, S., Harada, H., Okushi, T. & Hirashima, T., Nippon Kagaku Kaishi, 9 (1989) 1655.
- 7. Stoyanov, St. & Antonov, L., Dyes and Pigments, 10 (1983) 33.
- 8. Antonov, L., Stoyanov, St. & Stoyanova, T., Dyes and Pigments, 27 (1995) 133.
- 9. Antonov, L. & Stoyanov, St., Applied Spectroscopy, 47 (1993) 1030.
- 10. Antonov, L. & Stoyanov, St., Applied Spectroscopy, 47 (1993) 1712.
- 11. Antonov, L. & Stoyanov, St., Anal. Chim. Acta, in press.
- 12. Stoyanov, St., Antonov, L., Soloveytchik, B. & Petrova, V., Dyes and Pigments, 26 (1994) 149.
- 13. Griffiths, J., Dyes and Pigments, 3 (1982) 211.
- 14. Christie, R. M., Standring, P. N. & Griffiths, J., Dyes and Pigments, 9 (1988)
- 15. Lubai, Ch., Xing, Ch., Yufen, H. & Griffiths, J., Dyes and Pigments, 10 (1989) 123.
- 16. Lyčka, A., Jirman, J. & Nečas, M., Dyes and Pigments, 15 (1991) 23.